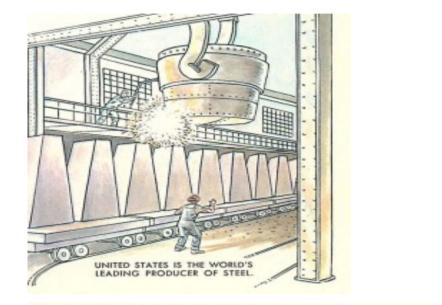


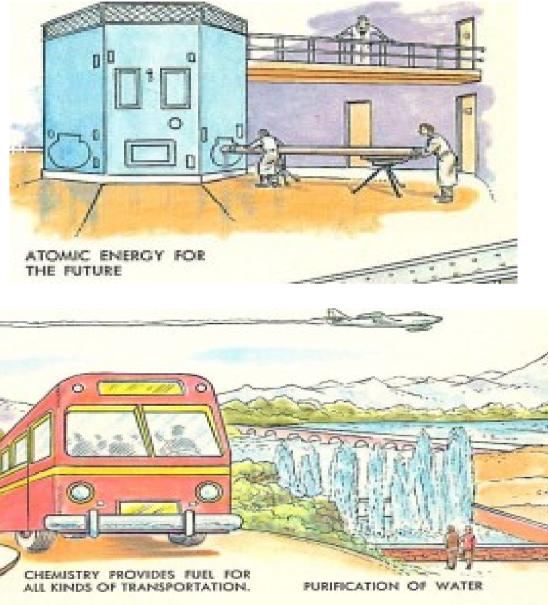
A refill-reuse spray system

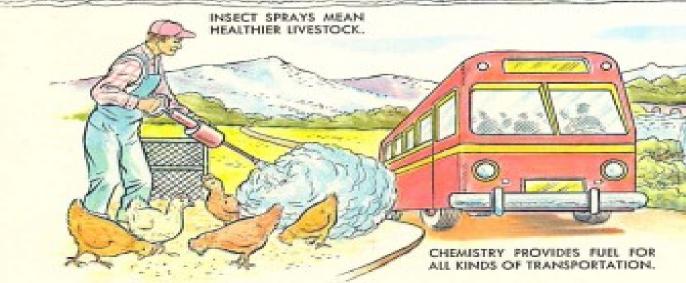
A vision for the aerosol industry

Index

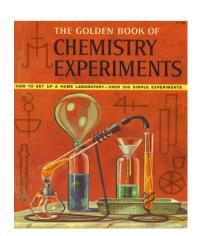
Origin of aerosols - CFCs and HFCs **Properties of F-gases** Ozone hole - challenge New propellants – challenges New challenges Compressed gases – problem and solution Aerosol handling and storage


Aerosol Uses & Benefits


"Aerosols offer a wide range of products from mass-market goods such as cosmetic and household products, to specific aerosol types dedicated for industrial or medical purposes." FEA



Origin of CFCs & HFCs



Origin of CFCs & HFCs

In the 1920s, refrigeration and air conditioning systems used compounds such as ammonia, chloromethane, propane and sulphur dioxide as refrigerants. Though effective, the compounds were toxic and flammable, and exposure to them could result in serious injury or death. A team of chemists at Frigidaire led by Thomas Midgely Jr. (1889-1944) worked to develop non toxic, non flammable alternatives to the refrigerants.

CFC Propellant Use 1977

TABLE 2.1 : TOTAL WORLD PRODUCTION OF F-11 AND F-12

FROM 1931 TO 1977

Thousand Metric Tons

	Year	F-11	F-12	Total F-11/12
as as	1931	0.0	0.5	0.5
	1935	0.0	1.0	1.0
14	1940	0.2	4.5	4.7
14	1945	0.4	20.1	20.5
	1950	6.6	34.6	41.2
	1955	26.3	57.6	83.9
	1960	49.7	99.4	149.1
	1965	122.8	190.1	312.9
	1970	241.1	336.9	578.0
	1971	266.6	360.5	627.1
	1972	310.5	401.7	712.2
	1973	354.3	447.5	801.8
	1974	377.6	473.6	851.2
	1975	322.5	419.7	742.2
	1976	349.9	449.8	799.7
	1977	330.7	424.4	755.1

Source : MCA and E.I. du Pont de Nemours & Co. (See References 2.2 and 2.3).

European aerosol production 1977 was 1,874,000,000 units

A.3	Distribution	of	EEC	sales	by	end	use	in	1977	was	as
follows	•										

	<u>F-11/12</u>	F-113/114
Sales in EEC - thousands of tons	233.0	19.3
Distribution	. 8	8
Aerosol propellants	69.8	27.2
Refrigeration and air- conditioning	8.7	1.2
Foam plastics	19.4	5.1
Solvent and other uses	2.1	66.5
	100.0	100.0

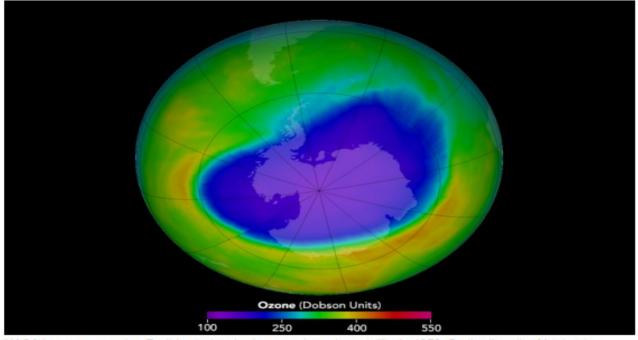
Key Properties of CFC Propellants

Non-flammable Low toxicity Wide range available Density (high) Inexpensive

The Aerosol Handbook M Johnson

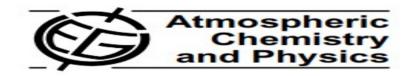
AER BEATHA LTD

Key Physical Properties of CFC/HFC


Density Kauri-Butanol Solvency P11 co-solvent Water solubility Vapour pressure

The Aerosol Handbook M Johnson

AER BEATHA LTD


Ozone Hole

NASA began measuring Earth's stratospheric ozone layer by satellite in 1979. By the time the Montreal Protocol went into effect in 1989, ozone concentrations (in Dobson units) had declined significantly over the Antarctic, enlarging the ozone hole. Ozone levels have since stabilized, but recovery is still decades away, according to NASA.

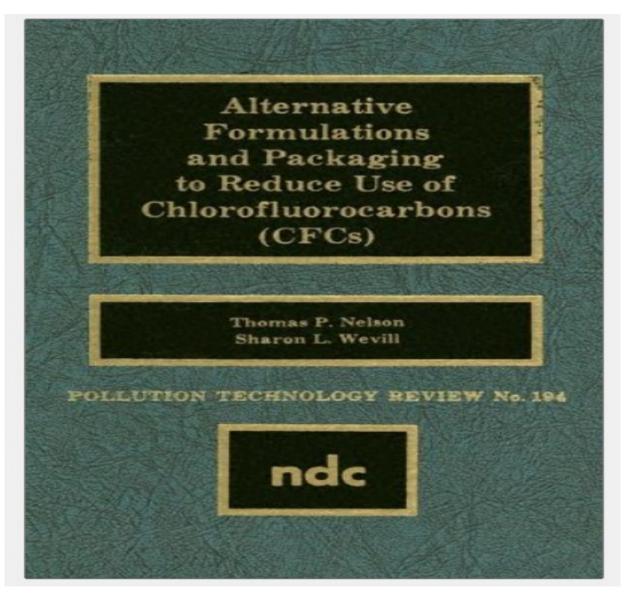
Courtesy Jesse Allen (2016), using Suomi NPP OMPS data provided courtesy of Colin Seftor (SSAI) and Aura OMI data provided courtesy of the Aura OMI science team. Suomi NPP is the result of a partnership between NASA, NOAA and the Department of Defense.

Atmos. Chem. Phys., 9, 2113–2128, 2009 www.atmos-chem-phys.net/9/2113/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

P. A. Newman¹, L. D. Oman², A. R. Douglass¹, E. L. Fleming³, S. M. Frith³, M. M. Hurwitz⁴, S. R. Kawa¹, C. H. Jackman¹, N. A. Krotkov⁵, E. R. Nash³, J. E. Nielsen³, S. Pawson¹, R. S. Stolarski¹, and G. J. M. Velders⁶

The Implications -1978


Social and Economic Implications of Controlling the Use of Chlorofluorocarbons in the EEC

divo inmar

FRANKFURT

A Formulator's Guide -1990

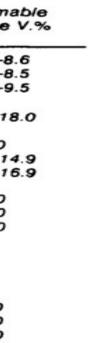
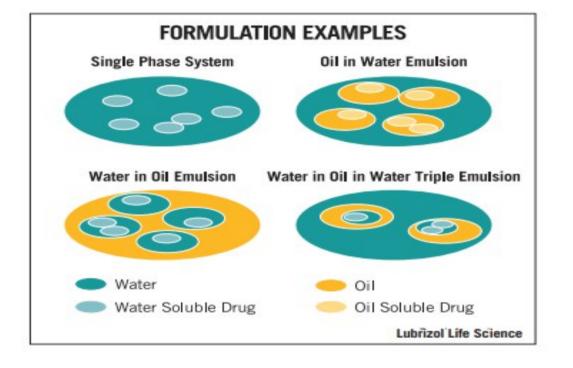
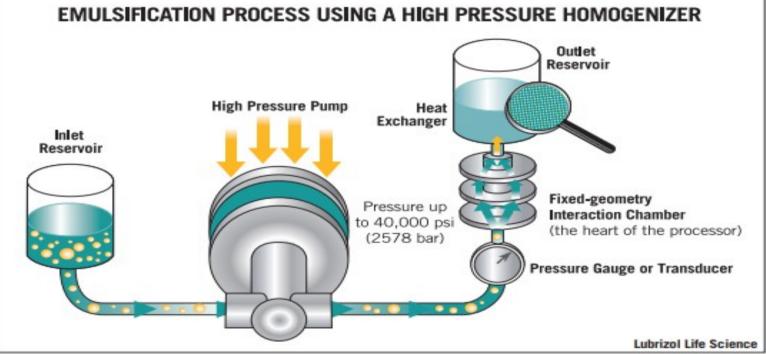

New Propellants

Table 1. Physical Properties of Non-CFC Aerosol Propellants

		Vapor Pre-	ssure (bar)		
Formula	Boiling Point (°C)	21°C	<u>55°C</u>	Density (g/mL) 21°C	Flammable Range V.%
n-CaH10	-2	1.20	4.79	0.580	1.8-8.6
	-11	2.17	7.02	0.559	1.8-8.5
C3H8	-42	7.60	18.17	0.503	2.2-9.5
(CH3)2O	-25	4.43	12.40	0.661	3.3-18.0
CHCIF	-41	8.52	20.92	1.208	0
					6.7-14.9
CH3-CHF2	-25	4.42	12.36	0.911	3.9-16.9
CO ₂	-78	58.45	N/A	0.721	0
	-88	52.47	N/A	0.718	0
N ₂	-155	N/A	N/A	N/A	0
	Futur	e Propellants			
CHCL CE	28	-0.2	17	1 470	0
					õ
					õ
					õ
					6.4-15.1
	$n-C_4H_10$ $i-C_4H_10$ C_3H_8 $(CH_3)_2O$ $CHCIF_2$ CH_3-CCIF_2 CH_3-CHF_2 CH_3-CHF_2 CO_2 N_2O	Formula (°C) $n-C_4H_10$ -2 $i-C_4H_10$ -11 C_3H_8 -42 $(CH_3)_2O$ -25 $CHCIF_2$ -41 CH_3-CCIF_2 -10 CH_3-CCIF_2 -10 CH_3-CCIF_2 -15 CO_2 -78 N_2O -88 N_2 -155 Futur $CHCI_2-CF_3$ 28 $CHCIF-CF_3$ -11 $CHCIF-CF_3$ -11 $CHCIF-CF_3$ -11 $CHCI_2-CF_3$ -11 CH_2-CF_3 -11 CH_2-CF_3 -11 CH_2-CF_3 -12	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Formula(°C) $21^{\circ}C$ $55^{\circ}C$ $n-C_4H_10$ -21.204.79 $i-C_4H_10$ -112.177.02 C_3H_8 -427.6018.17 $(CH_3)_2O$ -254.4312.40 $CHClF_2$ -418.5220.92 CH_3 -CClF_2-102.046.87 CH_3 -CHF_2-254.4212.36 CO_2 -7858.45N/A N_2O -8852.47N/A N_2 -155N/AN/A N_2 -155N/AN/A $CHCl_2$ -CF_3-113.228.8 CH_2 -CF_3-95N/AN/A CH_2 -CF_3-95N/AN/A	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

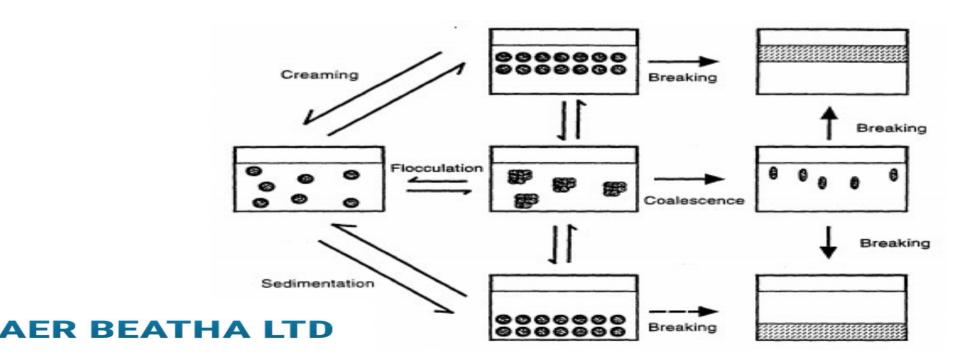
N/A = Non Applicable, above Critical Temperature




Formulation Challenges

Flammability Cost Availability Toxicology Solvency **Compatibility - stability** Corrosion Water-oil emulsions Performance Shelf-life

Formulation Challenges



Stokes Law

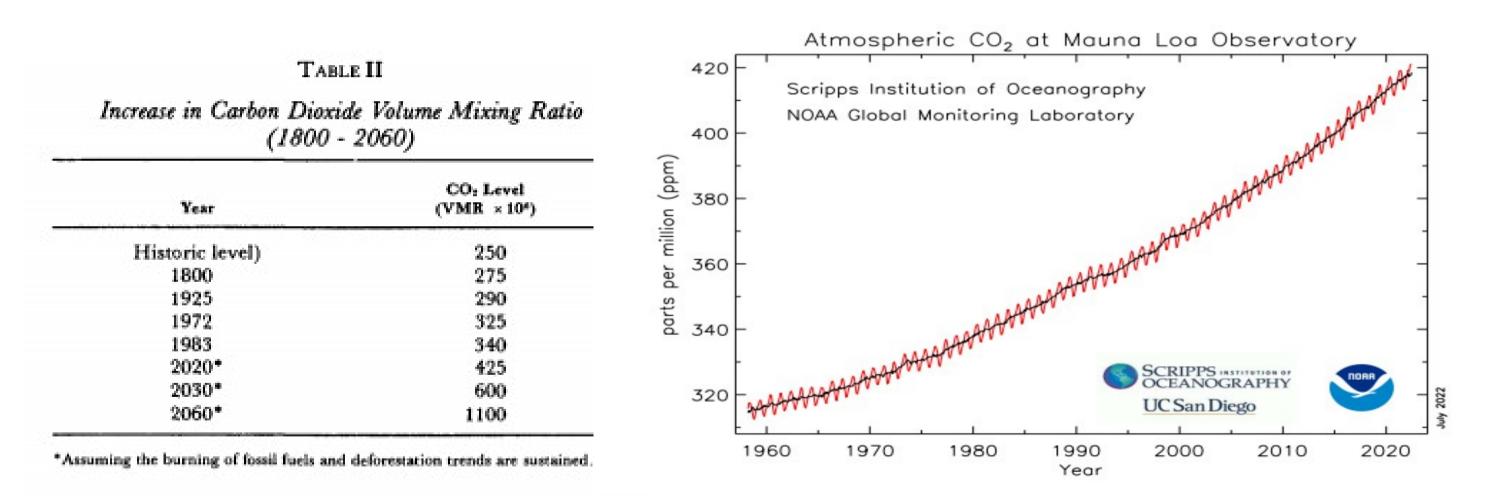
$$u = 2gr^2(d_1-d_2) / 9\eta$$

Sedimentation rate, u

Viscosity of continuous phase, ŋ Droplet radius, r Acceleration of gravity, g Density of dispersed phase, d1 Density of dispersed phase, d2

Next Challenges

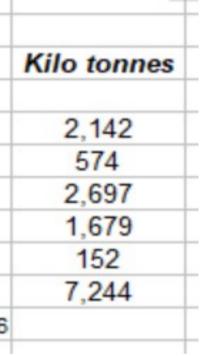
Global Warming Effect – CO2 levels


Volatile Organic Compounds - Ozone

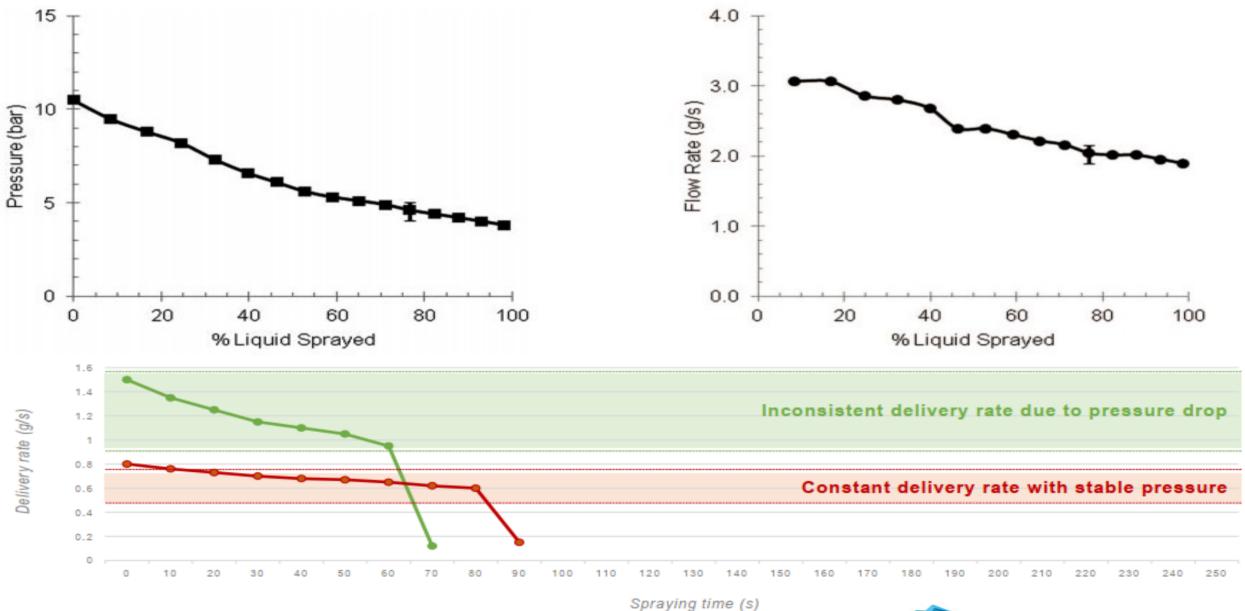
Indoor Environment – health effects

Sustainability

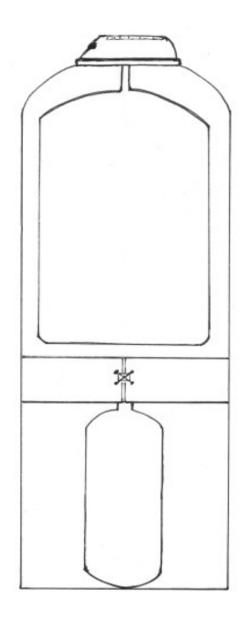
Carbon Dioxide


 $VOCS \rightarrow Ozone$

Global aerosol propellants	
Markets by Product	
Year 2012	Kilo tonnes
Hydrocarbons	7,244
DME	810
Nitrous oxide and carbon dioxide	646
Others	68
Total	8,768
Source Global Market Insights 2016	

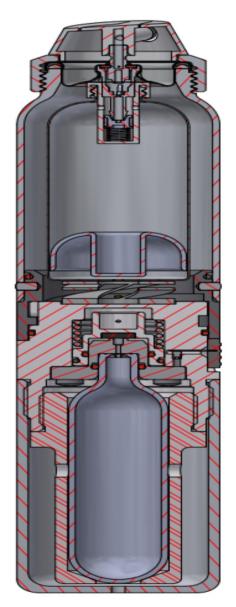

H	lydrocarbons by Market
	Year 2012
	North America
	Latin America
	Europe
	Asia Pacific
	MEA
	Total
Sol	urce Global Market Insights 2016

European aerosol production in 2012 was 5.535 billion units, and 5.271 billion units in 2020, According to FEA 2021.


Compressed Gases - Challenge

Source: Coster

Compressed Gases -> Refill-Reuse



Compressed Gases - Refill-Reuse

Refill-Reuse Spray Performance

Spray performance BOV (Summit 45436)

Testing using aqueous formulation with different actuators with pressure set at 5Bar CO2 throughout. Three repetitions with each actuator.

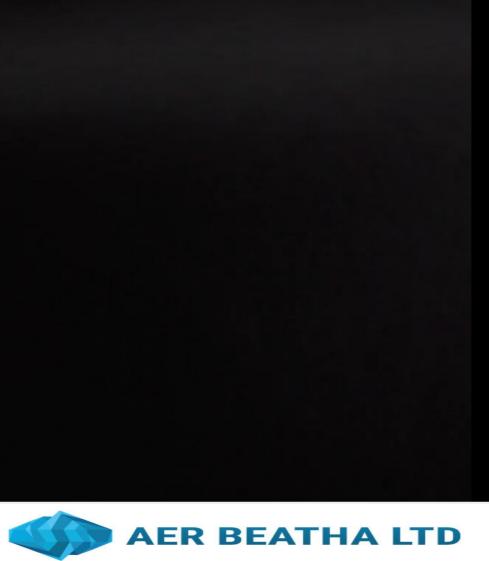
01/04/22									
Aqueous formulation	Stem	Pressure / Bar				Actuator			
	45438		753050	753013	753054	751007	V04.1390	V04.1334	V04.1313
Spray rate g/s		5	1.4	1.5	1.6	2.6	0.9	0.8	1.2
			FS	FS	FS	WS	VFS	VVFS	VVFS

Result

Spray rate can be set by actuator choice. Spray can be wet (WS) through to Very Very Fine Spray (VVFS).

AER BEATHA LTD

Aerosol Handling and Storage



Aer8® Spray **Refill – Reuse Spray**

Back Up

Properties of CFC/HFC Propellants

TABLE VI

The Commercial Properties of Major Chlorofluorocarbons and Alternative Compounds

	1	Boiling	Point			120 010		Worldwide esent or Potent Commercial A			.ist Dec-1981)
CFC Number	Formula	°F	°C	Toxicology	Flammability	Comm. Mfg. Process	Acrosol	Refrig./A-c.	Blowing AG.	\$/Lb.	\$/Kg
11	CCl ₃ F	75	24	Low	None	Excellent	Excellent*	Excellent	Excellent	0.64	1.41
12	CCl_2F_2	-22	-30	Low	None	Excellent	Excellent*	Excellent	Excellent	0.74	1.63
13	CCIF,	-115	-82	Low	None	Good	None	Good	None	11.00=	24.30¢
14	CF4	-198	-128	Low	None	Fair	None	Fair	None	18.62 ^c	41.06 ^c
21	CHCl ₂ F	48	9	Toxic	None	Fair	None	_	Good	-	_
22	CHClF ₂	-41	-40	Poss.v.wk.mutagen	None	Excellent	Good	Excellent	-	1.14	2.51
23	CHF,	-116	-83	Low	None	Fair	None	Fair		13.46	29.68
31	CH ₂ ClF	16	9	Toxic	Yes	None	Fair	None	None		
32	CH ₂ F ₂	-61	-52	Low	Yes	None	None	None	None		
113	CCl ₂ F.CClF ₂	118	48	Low	None	Excellent	Good*	Good	Good	0.79	1.74
114	CCIF2-CCIF2	39	4	Low	None	Excellent	Excellent*	Excellent	Excellent	1.02	2.25
115	CCIF2-CF3	-38	-39	Low	None	Good	Good*	Good	Good	2.55 **	5.62m
116	CF3-CF3	-164	-109	Low	None	Fair	None	Fair	None	4.90	10.80¢
123	CHCl2-CF1	82	28	Low	None	None	None	None	Fair		
124	CHCIF.CF3	12	-11	Low	None	None	None	Fair	Slight		
125	CHF2.CF3	-55	-48	Assumed low	None	None	None	Fair	None	_	-
132b	CH ₂ Cl ₂ CClF ₂	116	47	Very incomplete	None	None	None	None	Poor	_	
133a	CH2Cl-CF3	45	7	Embryotoxic	None	None (USA)	None (USA)	None	Fair	_	
134a	CH ₂ F.CF ₃	-16		Very incomplete	None	None	None	None	Fair	-	_
141b	CH ₃ .CCl ₂ F	90	32	Weak mutagen	Slight	Developmental	None	None	Good	_	_
142b	CH ₁ .CClF ₂	14		Very weak mutagen	Slight	Good	Good	Fair	Good	1.75¢	3.86
143a	CH3-CHF3	-54	-48	Incomplete	Moderate	None	None	Fair	None	_	_
152a	CH3-CHF2	-13	-25	Low	Moderate	Excellent	Very Good	Good	Good	1.55	3.42
3110	C4F10	28	-2	Low	None	Discontinued	Fair	Good	None		
C-318	C ₄ F ₈	22	-6	Low	None	Fair	Fair		None	11.00~	24.00m
_	(CHF ₂) ₂ O	28	-2	Very incomplete	None	Discontinued	Fair		_	12.00~	26.00ec
_	(CF3)2O	-67	-55	Very Incomplete	None	Discontinued	Fair	_	~	_	-
-	(CH3)2O	-13	-25	Low	Yes	Very Good	Excellent	Poor	None	0.57	1.26
H-1301	CBrF ₃	-72	-58	Low	None	Very Good	Specialized	Specialized	None	3.50-	7.72e
H-1211	CBrClF ₂	28	-2	Low	None	Very Good	Specialized	Specialized	None	2.00*	4.40*
(LP Gases)	C3Hs, etc.	-	_	Low	Yes!	Excellent	Excellent	None	None	0.22	0.48

*Banned in the U.S.A. for aerosols and partly banned or reduced in other countries. CFC-11 and 12 banned in Norway and Sweden.

Prices are for bulk (f.o.b.) unless noted by "c" = small cylinders (80 pound average net) or "tc" = ton cylinders. "e" represents a

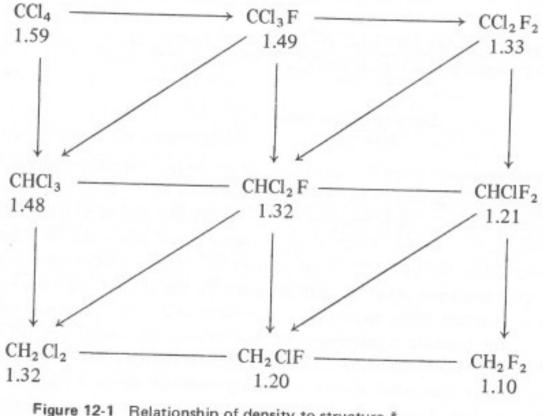
Some data may be slightly misleading due to brevity and those interested should pursue the available literature for more precise inf

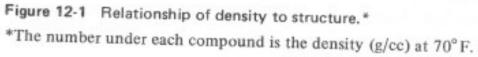
41 63 30 06 .51 68 74 25 62** 804 86 42 00 00~

Physical Properties of CFC/HFC

P-21 P-22 P-113 P-114 P-11 P-12 P-115 P-152a CHCl₂F CHClF₂ CCl₂FCClF₂ CClF₂CClF₂ **Formula** CCLF CCl_2F_2 CCIF₂CF₁ CH₁CHI Molecular Weight 137.4 120.9102.986.5187.4 170.9154.4 66.1 21.6 48.1 38.4 Boiling Point °F) 74.8 -41.4 117.6 -37.7 11.2 -252. Freezing Point (°F) -211. -256.-31. -168. -137. -159. -179. -1.3 70.28.4 122.5-9.2 12.9 104.9 61.7 Pressure (psi-g. at 70°F) Pressure (psi-g. at 130°F) 24.3181.0 50.5300. 3.4 58.8 252.1176. 0.911Density (gm./ml, at 70°F) 1.485 1.325 1.3231.2091.5741.4681.309 1.403 1.193 1.064 1.493 1.360 0.813Density (gm./ml. at 130°F) 1.191 1.149 7.330 7.83 6.2584.570 4.8278.781 3.38Vapor Density at B.P. (gm./1. 5.86185. Water Solubility (ml./100 gr.)* 20.5.7 226. 7.4 116. 25. 31. 12. 7. Kauri-Butanol Number 60. 18. 102. 11. 7.5 6.5 8.0 6.5 7.26.2 5.7 7.0 Solubility Parameter Hydrolysis in Water 0.0050.005 0.010 0.010 0.0050.0050.005 0.005(gm./yr.)** Hydrolysis in 1% Na₂CO₃ (gm./vr.)** 01.20 0.040 330 2200.010 0.005 0.00519. 0.825.20.141.4 0.080.010Hydrolysis in Water with Steel Strips Present (gm./vr.)** Flammability Limits in Air v% 5.1/19.1none none none none none none none

TABLE VII


Physical Properties of Chlorofluorinated and Fluorinated Hydrocarbon Propellents (Common Types)



į.	P-142b
F2 (CH3CCIF2
	100.5
	15.1 -204.
	29.1
	92.0
E)	1.119
8	1.028
	4.84
	33.
	20.
	6.8
5	0.010
5	
)	0.20
i.	9.0/14.8
200	

Key Physical Properties - Density

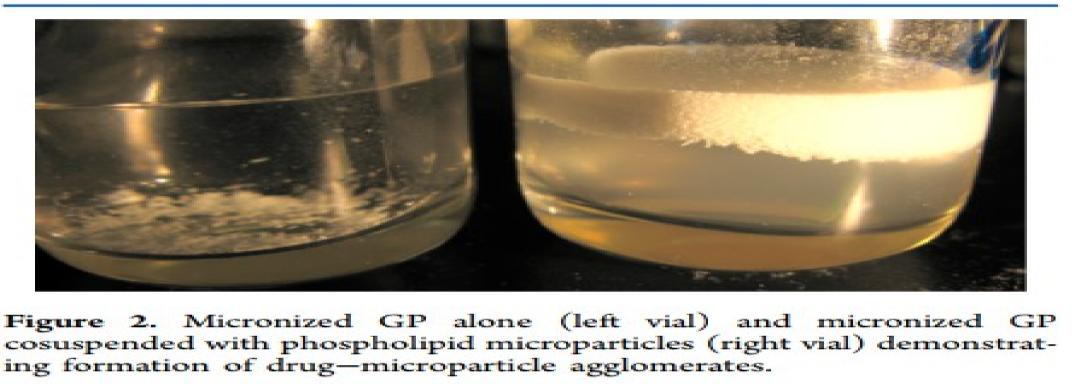
Density (1.10 to 1.59)

Key Physical Properties - Solvency

Fluorocarbon Number	Formula	Kauri-Butanol Vahue	Solubility Parameter
	METHAN	E SERIES	
11	CCl ₃ F	60	7.5
12	CCl ₂ F ₂	18	6.1
. 21	CHCl ₂ F	102	8.0
22	CHCIF ₂	2.5	6.5
31	CH ₂ ClF	35	9.0
32	CH_2F_2		7.5
	ETHANE	SERIES	
113	CCl ₂ FCClF ₂	31	7.2
114	CCIF ₂ CCIF ₂	12	6.2
123	CHCl ₂ CF ₃	60	7.3
124	CHCIFCF3	22	6.8
132b	CH2CICCl2F	72	7.9
133a	CH2CICF3	22	7.7
134a	CH ₂ FCF ₃		6.6
141b	CH ₃ CCl ₂ F	58	7.6
142b	CH ₃ CCIF ₂	20	6.8
143a	CH ₃ CF ₃		5.8
152a	CH ₃ CHF ₂	11	7.0

TABLE 10-1 SOLVENT PROPERTIES OF THE FLUOROCARBONS^{5,6,17}

Solvency - (Kauri-Butanol)


TABLE XXIII

Substance	General Solvency	Hydrogen Bonding	Kauri-Butano! Value	Solubility Parameter
Propane	Poor	0	15.2	7.1
Isobutane	Poor	0	17.5	7.1
n-Butane	Poor	0	19.5	7.1
Isopentane	Poor	0	21.3	7.1
Mineral Spirits	Poor	0	34 - 40	7.2
P-11	Good	0	60	7.5
P-12	Poor	0	18	6.1
P-22	Fair	Fair	25	6.5
P-113	Fair	0	31	7.2
P-114	Poor	0	12	6.2
P-142b	Good	Low	20	6.8
P-152a	Good	Low	11	7.0
P-C318	Very Poor	0	10	5.0
Dimethyl Ether	Very Good	High	91	7.3
Methylene Chloride	Excellent	Good	136	9.5
Chloroform	Excellent	Good	208	9.1
Carbon Tetrachloride	Excellent	0	113	8.6
Ethanol	Very Good	High		12.8
Isopropanol	Very Good	High		11.9
n-Butanol	Good	Fair		11.4
MEK	Very Good	High		9.3
MIBK	Very Good	High		8.4
Butyl Acetate	Very Good	High		8.4
Butyl Cellosolve	Very Good	High		8.9
Toluene	Very Good	200000-000	105	
Xylenes	Very Good		95	
Buna N	na	_•	na	9.4
Neoprene GN	na		na	9.2
Butyl Rubber	na		na	8.1
Natural Rubber	na	_•	na	8.3
Polyethylenes	na		na	7.4

Solvent Properties of Propellents and Other Substances

Emulsion Technology

ing formation of drug-microparticle agglomerates.

At ambient temperature, the density of the propellant, 1.206 kg/L, is higher than that of the phospholipid microparticles, 1.066 kg/L, and lower than that of the drug crystals, in this case, glycopyrrolate, 1.372 kg/L; therefore, if the drug and porous particles were not attached to each other in the co-suspension they would separate over time, i.e., the drug crystals would sediment, as shown in the left vial in Figure 2, and the porous particles would cream. However, even when gravitational acceleration was amplified 200-fold by centrifugation, no drug crystals sedimented, but rather rose to the surface together with the phospholipid microparticles, as can be observed in the right vial in Figure 2.

